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Euler’s Partition Theorem:

The number of partitions of an integer N into odd parts is equal
to the number of partitions of N into distinct parts.

Example: N = 8

Odd parts:

(7,1) (5,3) (5,1,1,1) (3,3,1,1) (3,1,1,1,1,1) (1,1,1,1,1,1,1,1)

Distinct Parts:

(8) (7,1) (6,2) (5,3) (5,2,1) (4,3,1)



Sylvester’s Bijection



Sylvester’s Bijection



`-sequences

For integer ` ≥ 2, define the sequence {a(`)
n }n≥1 by

a(`)
n = `a

(`)
n−1 − a

(`)
n−2,

with initial conditions a
(`)
1 = 1, a

(`)
2 = `.

{a(3)
n } = 1, 3, 8, 21, 55, 144, 377, . . .

{a(2)
n } = 1, 2, 3, 4, 5, 6, 7, . . .

(These are the (k, l) sequences in [BME2] with k = l = `.)
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` ≥ 2

The `-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

{a(`)
0 + a

(`)
1 , a

(`)
1 + a

(`)
2 , a

(`)
2 + a

(`)
3 , . . .}

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

c` =
` +

√
`2 − 4

2

Proof: via lecture hall partitions.

Stanley: bijection?



` = 2

The `-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

{0 + 1, 1 + 2, 2 + 3, . . .} = {1, 3, 5, . . .}

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

c2 =
2 +

√
22 − 4

2
= 1

Proof: via lecture hall partitions.
Stanley: bijection?



` = 3

The `-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

{0 + 1, 1 + 3, 3 + 8, . . .} = {1, 4, 11, 29, . . .}

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

c3 =
3 +

√
32 − 4

2
= (3 +

√
5)/2

Proof: via lecture hall partitions.
Stanley: bijection?
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Θ(`): Bijection for the `-Euler Theorem [SY07]

Given a partition µ into parts in

{a0 + a1, a1 + a2, a2 + a3, . . .}

construct λ = (λ1, λ2, . . .) by inserting the parts of µ in nonincreasing
order as follows:

To insert ak−1 + ak into (λ1, λ2, . . .):
If k = 1, then add a1 to λ1;
otherwise, if (λ1 + ak − ak−1) > c`(λ2 + ak−1 − ak−2),

add ak − ak−1 to λ1, add ak−1 − ak−2 to λ2;
recursively insert ak−2 + ak−1 into (λ3, λ4, . . .)

otherwise,
add ak to λ1, and add ak−1 to λ2.



The insertion step

To insert ak + ak−1 into (λ1, λ2, λ3, λ4, . . .) either do

(i) (λ1 + ak , λ2 + ak−1, λ3, λ4, . . .)

or

(ii) (λ1 + (ak − ak−1), λ2 + (ak−1 − ak−2),

insert (ak−1 + ak−2)into(λ3, λ4, . . .))

How to decide?

Do (ii) if the ratio of first two parts is okay, otherwise do (i).





Interpretation of a
(`)
n

Define T
(`)
n : set of `-ary strings of length n that do not contain

(`− 1)(`− 2)∗(`− 1)

T
(3)
1 = {0, 1, 2} |T (3)

1 | = 3

T
(3)
2 = {00, 01, 02, 11, 10, 12, 20, 21} |T (3)

2 | = 8

T
(3)
3 : all 27 except 220, 221, 222, 022, 122, and 212.

|T (3)
3 | = 27− 6 = 21

Theorem |T(`)
n | = a

(`)
n+1.



Binary numeration system

1 0 1 1 0 → 1 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22

(unique representation)

Ternary numeration system

1 0 2 1 1 → 1 ∗ 34 + 0 ∗ 33 + 2 ∗ 32 + 1 ∗ 31 + 1 ∗ 30 = 138

(unique representation)

A Fraenkel numeration system: ternary, but ...

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75

0 0 2 1 2 → 0 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 2 ∗ 1 = 21

0 1 0 0 0 → 0 ∗ 55 + 1 ∗ 21 + 0 ∗ 8 + 0 ∗ 3 + 0 ∗ 1 = 21

but unique representation by ternary strings with no 21*2



Binary numeration system

1 0 1 1 0 → 1 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22

(unique representation)

Ternary numeration system

1 0 2 1 1 → 1 ∗ 34 + 0 ∗ 33 + 2 ∗ 32 + 1 ∗ 31 + 1 ∗ 30 = 138

(unique representation)

A Fraenkel numeration system: ternary, but ...

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75

0 0 2 1 2 → 0 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 2 ∗ 1 = 21

0 1 0 0 0 → 0 ∗ 55 + 1 ∗ 21 + 0 ∗ 8 + 0 ∗ 3 + 0 ∗ 1 = 21

but unique representation by ternary strings with no 21*2



Binary numeration system

1 0 1 1 0 → 1 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22

(unique representation)

Ternary numeration system

1 0 2 1 1 → 1 ∗ 34 + 0 ∗ 33 + 2 ∗ 32 + 1 ∗ 31 + 1 ∗ 30 = 138

(unique representation)

A Fraenkel numeration system: ternary, but ...

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75

0 0 2 1 2 → 0 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 2 ∗ 1 = 21

0 1 0 0 0 → 0 ∗ 55 + 1 ∗ 21 + 0 ∗ 8 + 0 ∗ 3 + 0 ∗ 1 = 21

but unique representation by ternary strings with no 21*2



Binary numeration system

1 0 1 1 0 → 1 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22

(unique representation)

Ternary numeration system

1 0 2 1 1 → 1 ∗ 34 + 0 ∗ 33 + 2 ∗ 32 + 1 ∗ 31 + 1 ∗ 30 = 138

(unique representation)

A Fraenkel numeration system: ternary, but ...

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75

0 0 2 1 2 → 0 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 2 ∗ 1 = 21

0 1 0 0 0 → 0 ∗ 55 + 1 ∗ 21 + 0 ∗ 8 + 0 ∗ 3 + 0 ∗ 1 = 21

but unique representation by ternary strings with no 21*2



Theorem [Fraenkel 1985] Every nonnegative integer has a unique
(up to leading zeroes) representation as an `-ary string which does
not contain the pattern

(`− 1) (`− 2)∗ (`− 1).

Proof Show that

f : bnbn−1 . . . b1 −→
n∑

i=1

biai

is a bijection

f : T
(`)
n −→ {0, 1, 2, . . . a

(`)
n+1 − 1}.

The `-representation of an integer x is

[x ] = f −1(x).









Can revise bijection

To insert ak + ak+1 into (λ1, λ2, λ3, λ4, . . .) either do

(i) (λ1 + ak , λ2 + ak−1, λ3, λ4, . . .)

or

(ii) (λ1 + (ak − ak−1), λ2 + (ak−1 − ak−2),

insert (ak−1 + ak−2)into(λ3, λ4, . . .))

How to decide?

Do (i) if it does not create a carry in Fraenkel arithmetic;
otherwise do (ii).

So, insertion becomes a 2-d form of Fraenkel arithmetic.



Lecture Hall Partitions



The Lecture Hall Theorem [BME1] The generating function for
integer sequences λ1, λ2, . . . , λn satisfying:

Ln :
λ1

n
≥ λ2

n − 1
≥ . . . ≥ λn

1
≥ 0

is

Ln(q) =
n∏

i=1

1

1− q2i−1

limn→∞ (Lecture Hall Theorem) = Euler’s Theorem since

λ1

n
≥ λ2

n − 1
≥ . . . ≥ λn

1
≥ 0 −→ partitions into distinct parts

n∏
i=1

1

1− q2i−1
−→ partitions into odd parts
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Let {an} = {a(`)
n }.

The `-Lecture Hall Theorem [BME2]: The generating function
for integer sequences λ1, λ2, . . . , λn satisfying:

L
(`)
n :

λ1

an

≥ λ2

an−1

≥ . . . ≥ λn−1

a2

≥ λn

a1

≥ 0

is

L
(`)
n (q) =

n∏
i=1

1

(1− qai−1+ai )

limn→∞ (`-Lecture Hall Theorem) = `-Euler Theorem

since as n →∞, an/an−1 → c`



Θ
(`)
n : Bijection for the `-Lecture Hall Theorem

Given a partition µ into parts in

{a0 + a1, a1 + a2, a2 + a3, . . . , an−1 + an}

construct λ = (λ1, λ2, . . . , λn) by inserting the parts of µ in nonin-
creasing order as follows:

To insert ak−1 + ak into (λ1, λ2, . . . , λn):
If k = 1, then add a1 to λ1;
otherwise, if (λ1 + ak − ak−1) ≥ (an/an−1)(λ2 + ak−1 − ak−2),

add ak − ak−1 to λ1, add ak−1 − ak−2 to λ2;
recursively insert ak−2 + ak−1 into (λ3, λ4, . . . , λn)

otherwise,
add ak to λ1, and add ak−1 to λ2.



Relationship between bijections

















Truncated lecture hall partitions

L
(`)
n,k

,j

:

j ≥

λ1

n
≥ λ2

n − 1
≥ · · · ≥ λk−1

n − k + 2
≥ λk

n − k + 1
> 0

Theorem: [Corteel,S 2004]

L
(`)
n,k(q) = q(k+1

2 )
[

n
k

]
q

(−qn−k+1; q)k
(q2n−k+1; q)k

,

where (a; q)n = (1− a)(1− aq) · · · (1− aqn−1)

Theorem [Corteel,Lee,S 2005]

L
(`)
n,k,j(1) = jk

(
n

k

)

Analog for `-lecture hall partitions?
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L
(`)
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n
≥ λ2

n − 1
≥ · · · ≥ λk−1
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Theorem [Corteel,S 2004] Given positive integers s1, . . . , sn, the
generating function for the sequences λ1, . . . , λn satisfying

λ1

s1
≥ λ2

s2
≥ · · · ≥ λn−1

sn−1
≥ λn

sn
≥ 0

is ∑s2−1
z2=0

∑s3−1
z3=0 · · ·

∑sn−1
zn=0 q

d s1z2
s2
e+

Pn
i=2 zi

∏n−1
i=2 q

bid
zi+1
si+1

− zi
si
e∏n

i=1(1− qbi )

where b1 = 1 and for 2 ≤ i ≤ n, bi = s1 + s2 + · · ·+ si .

Corollary As q → 1, (1− q)n× this gf −→

s2s3 · · · sn∏n
i=1 bi

.



Truncated `-lecture hall partitions → `-nomials

Corollary For `-sequence {ai}:

L
(`)
n+k,k :

λ1

an+k
≥ λ2

an+k−1
≥ λk

an+1
> 0

L
(`)
n+k,k(q) =?

but

lim
q→1

((1− q)kL
(`)
n+k,k(q)) =

(
n

k

)(`)

(p1p2 · · · pk)(pn+kpn+k−1 · · · pn+1)

where pi = ai + ai−1 and

(
n

k

)(`)

is the `-nomial ...



The `-nomial coefficient(
n

k

)(`)

=
a
(`)
n a

(`)
n−1 · · · a

(`)
n−k+1

a
(`)
k a

(`)
k−1 · · · a

(`)
1

.

Example(
9

4

)(3)

=
2584 ∗ 987 ∗ 377 ∗ 144

21 ∗ 8 ∗ 3 ∗ 1
= 174, 715, 376.

Theorem [Lucas 1878]
(

n
k

)(`)
is an integer.

like Fibonomials, e.g. Ron Knott’s web page:

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/Fibonomials.html



“Pascal-like” triangle for the `-nomial coefficient:

1
1 1

1 3 1
1 8 8 1

1 21 56 21 1
1 55 385 385 55 1

1 144 2640 6930 2640 144 1

Theorem(
n

k

)(`)

= (a
(`)
k+1 − a

(`)
k )

(
n − 1

k

)(`)

+ (a
(`)
n−k − a

(`)
n−k−1)

(
n − 1

k − 1

)(`)



Let u` and v` be the roots of the polynomial x2 − `x + 1:

u` =
` +

√
`2 − 4

2
; v` =

`−
√

`2 − 4

2

Then

u` + v` = `; u`v` = 1.

a
(`)
n =

un
` − vn

`

u` − v`
.

For real r , define ∆
(`)
r = ur

` + v r
` . Then for integer n

∆
(`)
n = a

(`)
n+1 − a

(`)
n−1.

(∆ is the ` analog of “2”.)

(∆
(`)
n/2)

2 = un
` + 2(u`v`)

n/2 + vn
` = ∆

(`)
n + 2.

∆
(`)
−r = u−r

` + v−r
` = v r

` + ur
` = ∆

(`)
r
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A 3-term recurrence for the `-nomial [LS]

(
n

k

)(`)

=

(
n − 2

k

)(`)

+ ∆
(`)
n−1

(
n − 2

k − 1

)(`)

+

(
n − 2

k − 2

)(`)

Proof: Use identities:

a
(`)
n+k − a

(`)
n−k = ∆

(`)
n a

(`)
k .

a
(`)
n a

(`)
n−1 − a

(`)
k a

(`)
k−1 = a

(`)
n−ka

(`)
n+k−1.



An `-nomial theorem [LS]: An analog of

n∑
k=0

(
n

k

)
zk = (1 + z)n

is

n∑
k=0

(
n

k

)(`)

zk =
n−1∏
i=0

(u
i−(n−1)/2
` + v

i−(n−1)/2
` z) =

(1 + ∆
(`)
1 z + z2)(1 + ∆

(`)
3 z + z2) · · · (1 + ∆

(`)
n−1z + z2) n even

(1 + z)(1 + ∆
(`)
2 z + z2)(1 + ∆

(`)
4 z + z2) · · · (1 + ∆

(`)
n−1z + z2) n odd



A coin-flipping interpretation of the `-nomial

For real r , let C
(`)
r be a weighted coin for which the probability of

tails is ur
`/∆

(`)
r and the probability of heads is v r

` /∆
(`)
r .

The probability of getting exactly k heads when tossing the n coins

C
(`)
−(n−1)/2, C

(`)
1−(n−1)/2, C

(`)
2−(n−1)/2, . . . , C

(`)
(n−1)/2 :

(
n

k

)(`)

∆
(`)
−(n−1)/2∆

(`)
1−(n−1)/2 · · ·∆

(`)
(n−1)/2−1∆

(`)
(n−1)/2

∆
(`)
j/2 may not be an integer, but ∆

(`)
−j/2∆

(`)
j/2 = ∆

(`)
j + 2 is.
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Figure: The 8 possible results of tossing the weighted coins

C
(`)
−1 ,C

(`)
0 ,C

(`)
1 . Heads (pink) are indicated with their “v” weight and

tails (blue) with their “u” weight. The weight of each toss is shown.



Define a q-analog of the `-nomial:

a
(`)
n (q) =

un
` − vn

` qn

u` − v`q
; ∆

(`)
n (q) = un

` + vn
` qn

[
n

k

](`)

q

=
a
(`)
n (q) a

(`)
n−1(q) · · · a

(`)
n−k+1(q)

a
(`)
k (q) a

(`)
k−1(q) · · · a

(`)
1 (q)

.

Then[
n

k

](`)

q

= qk

[
n − 2

k

](`)

q

+ ∆
(`)
n−1(q)

[
n − 2

k − 1

](`)

q

+ qn−k

[
n − 2

k − 2

](`)

q

and

n∑
k=0

[
n

k

](`)

q

qk(k+1)/2zk = αn(q, z)

bn/2c∏
i=1

(1 + zqi∆
(`)
n−2i+1(q) + z2qn+1).

where αn(q, z) = 1 if n is even; (1 + zq(n+1)/2) if n is odd.



Proofs can be derived from this partition-theoretic interpretation:



Another q-analog of the `-nomial

Let an(q) = (1− qan)/(1− q). Then[
n

k

](`)

q

=
∑
(µ,f )

qshapeweight(µ)qfillweight(µ,f )

where the sum is over all pairs (µ, f ) such µ is a partition in
[k × (n − k)] and f is a filling f (i , j) of the cells of [k × (n − k)]
with elements of {0, 1, . . . `− 1} so that (i) no row of µ or column
of µc contains (`− 1)(`− 2)∗(`− 1) and ... (a bit more)

Indexing cells of k × (n − k) bottom to top, left to right:

I cell (i , j) has a shape weight (ai − ai−1)(aj − aj−1)

I shapeweight(µ) is sum of shape weights of cells in µ

I cell (i , j) has a fill weight aiaj

I fillweight(µ, f ) is
∑

i ,j f (i , j)aiaj .

(Now starting to get something related to lecture hall partitions.)



Question: Is there an analytic proof of the `-Euler theorem?
When ` = 2, the standard approach is to show the equivalence of
the generating functions for the set of partitions into odd parts and
the set of partitions into distinct parts:

∞∏
k=1

1

1− q2k−1
=

∞∏
k=1

(1 + qk).

The sum/product form of Euler’s theorem is

∞∏
k=1

1

1− q2k−1
=

∞∑
k=0

qk(k+1)

(q; q)k

Is there an analog for the `-Euler theorem? What is the sum-side
generating function for partitions in which the ratio of consecutive
parts is greater than c`?



Question: When ` = 2, several refinements of Euler’s theorem
follow from Sylvester’s bijection. What refinements of the `-Euler
theorem can be obtained from the bijection? We have some partial
answers, but here’s one we can’t answer:

Sylvester showed that if, in his bijection, the partition µ into odd
parts maps to λ (distinct parts), then the number of distinct part
sizes occurring in µ is the same as the number of maximal chains
in λ. (A chain is a sequence of consecutive integers.) Is there an
analog for ` > 2?



Question: Can we enumerate either of these finite sets:

I The integer sequences λ1, . . . , λn in which the ratio of

consecutive parts is greater than c` and λ1 < a
(`)
n+1?

We have a combinatorial characterization: these can be
viewed as fillings of a staircase of shape (n, n − 1, . . . , 1) such
that (i) the filling of each row is an `-ary string with no
(`− 1)(`− 2)∗(`− 1) and (ii) the rows are weakly decreasing,
lexicographically. For ` = 2 the answer is 2n.

I The integer sequences λ1, . . . , λn satisfying

1 ≥ λ1

an

≥ λ2

an−1

≥ . . . ≥ λn−1

a2

≥ λn

a1

≥ 0

For ` = 2 this is the same set as above and the answer is 2n.



Question: What is the generating function for truncated `-lecture
hall partitions?

Question: What is the right q-analog of the `-nomial (and the
right interpretation) to explain and generalize lecture hall
partitions?
(We know what lecture hall partitions look like in the “`-world”.
What about ordinary partitions? partitions into distinct parts?)

Question: There are several q-series identities related to Euler’s
theorem, such as Lebesgue’s identity the Roger’s-Fine identity
Cauchy’s identity Are there `-analogs?
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