Euler's partition theorem and the combinatorics of *ℓ*-sequences

Carla D. Savage

North Carolina State University

June 26, 2008

Inspiration

- BME1 Mireille Bousquet-Mélou, and Kimmo Eriksson, *Lecture hall partitions*,
 Ramanujan. J., 1:1, 1997, 101-111.
- BME2 Mireille Bousquet-Mélou, and Kimmo Eriksson, *Lecture hall partitions II*, Ramanujan. J., 1:2, 1997, 165-185.

Reference

- SY07 C. D. S. and Ae Ja Yee, *Euler's partition theorem and the combinatorics of ℓ-sequences*, JCTA, 2007, to appear, available online.
- LS08 Nicholas Loehr, and C. D. S. *Notes on \ell-nomials*, in preparation.

Euler's partition theorem

1, 2, 3, ... ℓ -sequences

Euler's partition theorem

1, 2, 3, ... ℓ -sequences

Euler's partition theorem The ℓ -Euler theorem

1, 2, 3, ... ℓ -sequences

Euler's partition theorem
The ℓ -Euler theorem

Lecture hall partitions \ell-Lecture hall partitions

1, 2, 3, ... *ℓ*-sequences

Euler's partition theorem
The \(\ell_{\text{-}} \text{Fuler theorem} \)

Lecture hall partitions ℓ-Lecture hall partitions

Binomial coefficients \(\ell \- \text{nomial coefficients} \)

Euler's Partition Theorem:

The number of partitions of an integer N into odd parts is equal to the number of partitions of N into distinct parts.

Example:
$$N = 8$$

Odd parts:

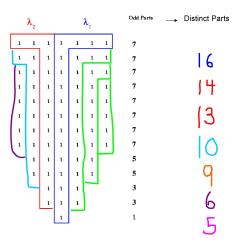
$$(7,1) \quad (5,3) \quad (5,1,1,1) \quad (3,3,1,1) \quad (3,1,1,1,1,1) \quad (1,1,1,1,1,1,1,1)$$

Distinct Parts:

Sylvester's Bijection

	λ			1	$\lambda_{_1}$	Odd Parts	
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
1	1	1	1	1	1	1	7
	1	1	1	1	1		5
	1	1	1	1	1		5
	•	1	1	1	•		3
							3
		1	1	1			
			1				1

Sylvester's Bijection



ℓ -sequences

For integer $\ell \geq 2$, define the sequence $\{a_n^{(\ell)}\}_{n\geq 1}$ by

$$a_n^{(\ell)} = \ell a_{n-1}^{(\ell)} - a_{n-2}^{(\ell)},$$

with initial conditions $a_1^{(\ell)} = 1$, $a_2^{(\ell)} = \ell$.

ℓ -sequences

For integer $\ell \geq 2$, define the sequence $\{a_n^{(\ell)}\}_{n\geq 1}$ by

$$a_n^{(\ell)} = \ell a_{n-1}^{(\ell)} - a_{n-2}^{(\ell)},$$

with initial conditions $a_1^{(\ell)} = 1$, $a_2^{(\ell)} = \ell$.

$$\{a_n^{(3)}\} = 1, 3, 8, 21, 55, 144, 377, \dots$$

$$\{a_n^{(2)}\}=1, 2, 3, 4, 5, 6, 7, \dots$$

ℓ -sequences

For integer $\ell \geq 2$, define the sequence $\{a_n^{(\ell)}\}_{n\geq 1}$ by

$$a_n^{(\ell)} = \ell a_{n-1}^{(\ell)} - a_{n-2}^{(\ell)},$$

with initial conditions $a_1^{(\ell)}=1$, $a_2^{(\ell)}=\ell$.

$$\{a_n^{(3)}\} = 1, 3, 8, 21, 55, 144, 377, \dots$$

$$\{a_n^{(2)}\}=1, 2, 3, 4, 5, 6, 7, \dots$$

(These are the (k, l) sequences in [BME2] with $k = l = \ell$.)

$$\ell \geq 2$$

$$\{a_0^{(\ell)}+a_1^{(\ell)},\ a_1^{(\ell)}+a_2^{(\ell)},\ a_2^{(\ell)}+a_3^{(\ell)},\ \ldots\}$$

is the same as the number of partitions of N in which the ratio of consecutive parts is greater than

$$c_{\ell} = \frac{\ell + \sqrt{\ell^2 - 4}}{2}$$

Proof: via lecture hall partitions.

$$\ell = 2$$

$$\{0+1,\ 1+2,\ 2+3,\ \ldots\}\ =\ \{1,\ 3,\ 5,\ldots\}$$

is the same as the number of partitions of N in which the ratio of consecutive parts is greater than

$$c_2 = \frac{2 + \sqrt{2^2 - 4}}{2} = 1$$

$$\ell = 3$$

$$\{0+1,\ 1+3,\ 3+8,\ \ldots\}\ =\ \{1,\ 4,\ 11,\ 29,\ldots\}$$

is the same as the number of partitions of N in which the ratio of consecutive parts is greater than

$$c_3 = \frac{3 + \sqrt{3^2 - 4}}{2} = (3 + \sqrt{5})/2$$

$$\ell = 3$$

$$\{0+1, 1+3, 3+8, \ldots\} = \{1, 4, 11, 29, \ldots\}$$

is the same as the number of partitions of N in which the ratio of consecutive parts is greater than

$$c_3 = \frac{3+\sqrt{3^2-4}}{2} = (3+\sqrt{5})/2$$

Stanley: bijection?

$\Theta^{(\ell)}$: Bijection for the ℓ -Euler Theorem [SY07]

Given a partition μ into parts in

$${a_0 + a_1, a_1 + a_2, a_2 + a_3, \ldots}$$

construct $\lambda = (\lambda_1, \lambda_2, ...)$ by inserting the parts of μ in nonincreasing order as follows:

```
To insert a_{k-1}+a_k into (\lambda_1,\lambda_2,\ldots): If k=1, then add a_1 to \lambda_1; otherwise, if (\lambda_1+a_k-a_{k-1})>c_\ell(\lambda_2+a_{k-1}-a_{k-2}), add a_k-a_{k-1} to \lambda_1, add a_{k-1}-a_{k-2} to \lambda_2; recursively insert a_{k-2}+a_{k-1} into (\lambda_3,\lambda_4,\ldots) otherwise, add a_k to \lambda_1, and add a_{k-1} to \lambda_2.
```

The insertion step

To insert $a_k + a_{k-1}$ into $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, ...)$ either do

(i)
$$(\lambda_1 + a_k, \ \lambda_2 + a_{k-1}, \ \lambda_3, \lambda_4, \ldots)$$

or

(ii)
$$(\lambda_1 + (a_k - a_{k-1}), \ \lambda_2 + (a_{k-1} - a_{k-2}),$$

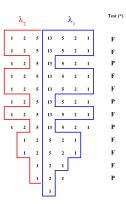
insert $(a_{k-1} + a_{k-2})into(\lambda_3, \lambda_4, \ldots))$

How to decide?

Do (ii) if the ratio of first two parts is okay, otherwise do (i).

Sylvester Diagrams

	λ_2					Test (*)	
1	1	1	1	1	1	1	F
1	1	1	1	1	1	1	P
1	1	1	1	1	1	1	P
1	1	1	1	1	1	1	P
1	1	1	1	1	1	1	P
1	1	1	1	1	1	1	P
1	1	1	1	1	1	1	P
1	1	1	1	1	1	1	P
	1	1	1	1	1		P
	1	1	1	1	1		P
		1	1	1			P
		1	1	1			P
			1				



Interpretation of $a_n^{(\ell)}$

Define $T_n^{(\ell)}$: set of ℓ -ary strings of length n that do not contain

$$(\ell-1)(\ell-2)^*(\ell-1)$$

$$T_1^{(3)} = \{0, 1, 2\}$$
 $|T_1^{(3)}| = 3$

$$T_2^{(3)} = \{00, 01, 02, 11, 10, 12, 20, 21\}$$
 $|T_2^{(3)}| = 8$

 $T_3^{(3)}$: all 27 except 220, 221, 222, 022, 122, and 212.

$$|T_3^{(3)}| = 27 - 6 = 21$$

Theorem
$$|\mathbf{T}_{n}^{(\ell)}| = \mathbf{a}_{n+1}^{(\ell)}$$
.

$$1\ 0\ 1\ 1\ 0 \qquad \rightarrow \qquad 1*2^4+0*2^3+1*2^2+1*2^1+0*2^0=22$$

(unique representation)

Ternary numeration system

$$1\ 0\ 2\ 1\ 1 \qquad \rightarrow \qquad 1*3^4 + 0*3^3 + 2*3^2 + 1*3^1 + 1*3^0 = 138$$

(unique representation)

1 0 1 1 0
$$\rightarrow$$
 1 * 2⁴ + 0 * 2³ + 1 * 2² + 1 * 2¹ + 0 * 2⁰ = 22

(unique representation)

Ternary numeration system

$$1\ 0\ 2\ 1\ 1 \qquad \rightarrow \qquad 1*3^4 + 0*3^3 + 2*3^2 + 1*3^1 + 1*3^0 = 138$$

(unique representation)

A Fraenkel numeration system: ternary, but ...

$$1\ 0\ 2\ 1\ 1 \qquad \rightarrow \qquad 1*55 + 0*21 + 2*8 + 1*3 + 1*1 = 75$$

1 0 1 1 0
$$\rightarrow$$
 1 * 2⁴ + 0 * 2³ + 1 * 2² + 1 * 2¹ + 0 * 2⁰ = 22

(unique representation)

Ternary numeration system

$$1\ 0\ 2\ 1\ 1 \qquad \rightarrow \qquad 1*3^4 + 0*3^3 + 2*3^2 + 1*3^1 + 1*3^0 = 138$$

(unique representation)

A Fraenkel numeration system: ternary, but ...

$$1 \ 0 \ 2 \ 1 \ 1 \qquad \rightarrow \qquad 1 * 55 + 0 * 21 + 2 * 8 + 1 * 3 + 1 * 1 = 75$$

$$0\ 0\ 2\ 1\ 2 \qquad \rightarrow \qquad 0* \\ 55 + 0* \\ 21 + 2* \\ 8 + 1* \\ 3 + 2* \\ 1 = 21$$

$$0\ 1\ 0\ 0\ 0$$
 \rightarrow $0*55+1*21+0*8+0*3+0*1=21$

1 0 1 1 0
$$\rightarrow$$
 1 * 2⁴ + 0 * 2³ + 1 * 2² + 1 * 2¹ + 0 * 2⁰ = 22

(unique representation)

Ternary numeration system

1 0 2 1 1
$$\rightarrow$$
 1 * 3⁴ + 0 * 3³ + 2 * 3² + 1 * 3¹ + 1 * 3⁰ = 138

(unique representation)

A Fraenkel numeration system: ternary, but ...

$$1 0 2 1 1 \longrightarrow 1*55 + 0*21 + 2*8 + 1*3 + 1*1 = 75$$

$$0 0 2 1 2 \longrightarrow 0*55 + 0*21 + 2*8 + 1*3 + 2*1 = 21$$

$$0 1 0 0 0 \longrightarrow 0*55 + 1*21 + 0*8 + 0*3 + 0*1 = 21$$

but unique representation by ternary strings with no 21*2

Theorem [Fraenkel 1985] Every nonnegative integer has a unique (up to leading zeroes) representation as an ℓ -ary string which does not contain the pattern

$$(\ell-1) (\ell-2)^* (\ell-1).$$

Proof Show that

$$f: b_n b_{n-1} \dots b_1 \longrightarrow \sum_{i=1}^n b_i a_i$$

is a bijection

$$f: T_n^{(\ell)} \longrightarrow \{0, 1, 2, \dots a_{n+1}^{(\ell)} - 1\}.$$

The ℓ -representation of an integer x is

$$[x] = f^{-1}(x).$$

λ	377	144	55	21	8	3	1	lex order
754	2	0	0	0	0	О	0	2000000
273		1	2	0	2	1	0	1202100
102			1	2	0	1	2	1201200
38				1	2	0	1	1 2 0 1 0 0 0
14					1	2	0	1200000
5						1	2	1200000
1							1	1000000

λ	377	144	55	21	8	3	1	lex order
754	2	0	0	0	0	0	0	2000000
273		1	2	0	2	1	0	1202100
102			1	2	0	1	2	1201200
38				1	2	0	1	1201000
14					1	2	0	1200000
5						1	2	1200000
1							1	1000000

Theorem [SY07]: For positive integers x, y,

 $x \ > \ {\color{red} c_\ell y} \ \ \mathrm{iff} \ \ [x] \succeq [y] \cdot 0$

$$c_3 = (3 + \sqrt{5})/2 \approx 2.618$$

	λ	377	144	55	21	8	3	1	lex order
2.162	754	2	0	0	0	0	0	0	2000000
2.162 2.676 2.684	273		1	2	0	2	1	o	1202100
2.684	102			1	2	0	1	2	1201200
2.714	38				1	2	0	1	1201000
2.8	14					1	2	0	1200000
5	5						1	2	1200000
	1							1	1000000

$$x > c_{\ell}y$$
 iff $[x] \succeq [y] \cdot 0$

Can revise bijection

To insert $a_k + a_{k+1}$ into $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, ...)$ either do

(i)
$$(\lambda_1 + a_k, \ \lambda_2 + a_{k-1}, \ \lambda_3, \lambda_4, \ldots)$$

or

(ii)
$$(\lambda_1 + (a_k - a_{k-1}), \ \lambda_2 + (a_{k-1} - a_{k-2}),$$

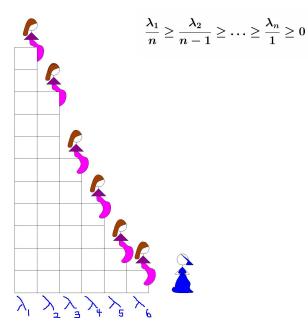
insert $(a_{k-1} + a_{k-2})into(\lambda_3, \lambda_4, ...))$

How to decide?

Do (i) if it does not create a carry in Fraenkel arithmetic; otherwise do (ii).

So, insertion becomes a 2-d form of Fraenkel arithmetic.

Lecture Hall Partitions



The Lecture Hall Theorem [BME1] The generating function for integer sequences $\lambda_1, \lambda_2, \dots, \lambda_n$ satisfying:

$$L_n: \frac{\lambda_1}{n} \ge \frac{\lambda_2}{n-1} \ge \ldots \ge \frac{\lambda_n}{1} \ge 0$$

is

$$L_n(q) = \prod_{i=1}^n \frac{1}{1 - q^{2i-1}}$$

The Lecture Hall Theorem [BME1] The generating function for integer sequences $\lambda_1, \lambda_2, \dots, \lambda_n$ satisfying:

$$L_n: \frac{\lambda_1}{n} \geq \frac{\lambda_2}{n-1} \geq \ldots \geq \frac{\lambda_n}{1} \geq 0$$

is

$$L_n(q) = \prod_{i=1}^n \frac{1}{1 - q^{2i-1}}$$

 $\lim_{n\to\infty}$ (Lecture Hall Theorem) = Euler's Theorem

since

$$\frac{\lambda_1}{n} \ge \frac{\lambda_2}{n-1} \ge \ldots \ge \frac{\lambda_n}{1} \ge 0 \longrightarrow \text{ partitions into distinct parts}$$

$$\prod_{i=1}^{n} \frac{1}{1 - q^{2i-1}} \longrightarrow \text{partitions into odd parts}$$

Let
$$\{a_n\} = \{a_n^{(\ell)}\}.$$

The ℓ -Lecture Hall Theorem [BME2]: The generating function for integer sequences $\lambda_1, \lambda_2, \dots, \lambda_n$ satisfying:

$$L_n^{(\ell)}: \frac{\lambda_1}{a_n} \ge \frac{\lambda_2}{a_{n-1}} \ge \ldots \ge \frac{\lambda_{n-1}}{a_2} \ge \frac{\lambda_n}{a_1} \ge 0$$

is

$$L_n^{(\ell)}(q) = \prod_{i=1}^n \frac{1}{(1-q^{a_{i-1}+a_i})}$$

 $\lim_{n\to\infty} (\ell\text{-Lecture Hall Theorem}) = \ell\text{-Euler Theorem}$ since as $n\to\infty$, $a_n/a_{n-1}\to c_\ell$

$\Theta_n^{(\ell)}$: Bijection for the ℓ -Lecture Hall Theorem

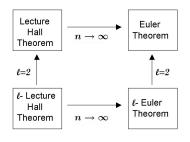
Given a partition μ into parts in

$${a_0 + a_1, a_1 + a_2, a_2 + a_3, \dots, a_{n-1} + a_n}$$

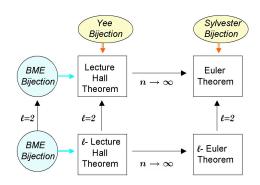
construct $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ by inserting the parts of μ in nonincreasing order as follows:

```
To insert a_{k-1}+a_k into (\lambda_1,\lambda_2,\ldots,\lambda_n): If k=1, then add a_1 to \lambda_1; otherwise, if (\lambda_1+a_k-a_{k-1})\geq (a_n/a_{n-1})(\lambda_2+a_{k-1}-a_{k-2}), add a_k-a_{k-1} to \lambda_1, add a_{k-1}-a_{k-2} to \lambda_2; recursively insert a_{k-2}+a_{k-1} into (\lambda_3,\lambda_4,\ldots,\lambda_n) otherwise, add a_k to \lambda_1, and add a_{k-1} to \lambda_2.
```

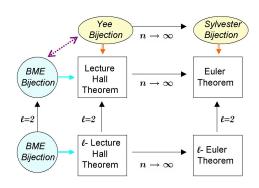
Relationship between bijections



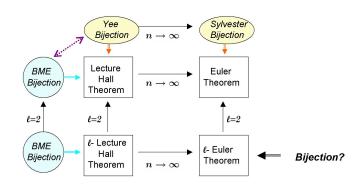
Bijections

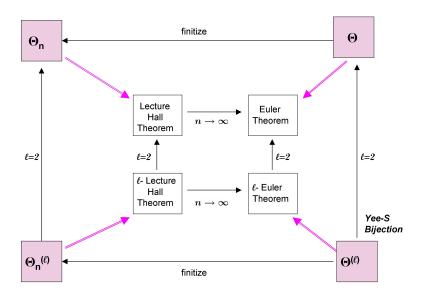


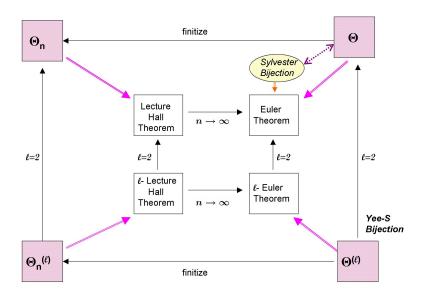
Bijections

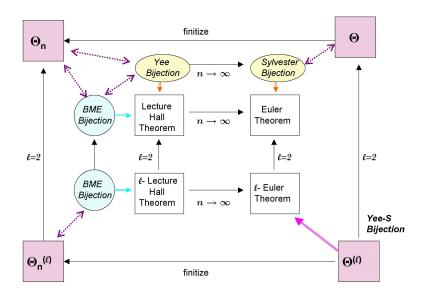


Bijections









Truncated lecture hall partitions

$$L_{n,k}^{(\ell)}$$
: $\frac{\lambda_1}{n} \ge \frac{\lambda_2}{n-1} \ge \dots \ge \frac{\lambda_{k-1}}{n-k+2} \ge \frac{\lambda_k}{n-k+1} > 0$

Theorem: [Corteel, S 2004]

$$L_{n,k}^{(\ell)}(q) = q^{\binom{k+1}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_q \frac{(-q^{n-k+1};q)_k}{(q^{2n-k+1};q)_k},$$
 where $(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$

Truncated lecture hall partitions

$$L_{n,k,j}^{(\ell)}: j \ge \frac{\lambda_1}{n} \ge \frac{\lambda_2}{n-1} \ge \dots \ge \frac{\lambda_{k-1}}{n-k+2} \ge \frac{\lambda_k}{n-k+1} > 0$$

Theorem: [Corteel, S 2004]

$$L_{n,k}^{(\ell)}(q) = q^{\binom{k+1}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_q \frac{(-q^{n-k+1};q)_k}{(q^{2n-k+1};q)_k},$$

where
$$(a; q)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1})$$

Theorem [Corteel, Lee, S 2005]

$$L_{n,k,j}^{(\ell)}(1) = j^k \binom{n}{k}$$

Analog for ℓ-lecture hall partitions?

Theorem [Corteel,S 2004] Given positive integers s_1, \ldots, s_n , the generating function for the sequences $\lambda_1, \ldots, \lambda_n$ satisfying

$$\frac{\lambda_1}{s_1} \ge \frac{\lambda_2}{s_2} \ge \cdots \ge \frac{\lambda_{n-1}}{s_{n-1}} \ge \frac{\lambda_n}{s_n} \ge 0$$

is

$$\frac{\sum_{z_2=0}^{s_2-1}\sum_{z_3=0}^{s_3-1}\cdots\sum_{z_n=0}^{s_n-1}q^{\lceil\frac{s_1z_2}{s_2}\rceil+\sum_{i=2}^nz_i}\prod_{i=2}^{n-1}q^{b_i\lceil\frac{z_{i+1}}{s_{i+1}}-\frac{z_i}{s_i}\rceil}}{\prod_{i=1}^n(1-q^{b_i})}$$

where $b_1 = 1$ and for $2 \le i \le n$, $b_i = s_1 + s_2 + \cdots + s_i$.

Corollary As $q \to 1$, $(1-q)^n \times$ this gf \longrightarrow

$$\frac{s_2s_3\cdots s_n}{\prod_{i=1}^n b_i}.$$

Truncated ℓ -lecture hall partitions $\rightarrow \ell$ -nomials

Corollary For ℓ -sequence $\{a_i\}$:

$$L_{n+k,k}^{(\ell)}: \frac{\lambda_1}{a_{n+k}} \ge \frac{\lambda_2}{a_{n+k-1}} \ge \frac{\lambda_k}{a_{n+1}} > 0$$

$$L_{n+k,k}^{(\ell)}(q) = ?$$

but

$$\lim_{q \to 1} ((1-q)^k L_{n+k,k}^{(\ell)}(q)) = \frac{\binom{n}{k}^{(\ell)}}{(p_1 p_2 \cdots p_k)(p_{n+k} p_{n+k-1} \cdots p_{n+1})}$$

where
$$p_i = a_i + a_{i-1}$$
 and $\binom{n}{k}^{(\ell)}$ is the ℓ -nomial ...

The ℓ-nomial coefficient

$$\binom{n}{k}^{(\ell)} = \frac{a_n^{(\ell)} a_{n-1}^{(\ell)} \cdots a_{n-k+1}^{(\ell)}}{a_k^{(\ell)} a_{k-1}^{(\ell)} \cdots a_1^{(\ell)}}.$$

Example

$$\binom{9}{4}^{(3)} = \frac{2584 * 987 * 377 * 144}{21 * 8 * 3 * 1} = 174,715,376.$$

Theorem [Lucas 1878] $\binom{n}{k}^{(\ell)}$ is an integer.

like Fibonomials, e.g. Ron Knott's web page: http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/Fibonomials.html

"Pascal-like" triangle for the \(\ell \)-nomial coefficient:

Theorem

$$\binom{n}{k}^{(\ell)} = (a_{k+1}^{(\ell)} - a_k^{(\ell)}) \binom{n-1}{k}^{(\ell)} + (a_{n-k}^{(\ell)} - a_{n-k-1}^{(\ell)}) \binom{n-1}{k-1}^{(\ell)}$$

Let u_{ℓ} and v_{ℓ} be the roots of the polynomial $x^2 - \ell x + 1$:

$$u_{\ell} = \frac{\ell + \sqrt{\ell^2 - 4}}{2};$$
 $v_{\ell} = \frac{\ell - \sqrt{\ell^2 - 4}}{2}$

Then

$$u_\ell + v_\ell = \ell; \qquad u_\ell v_\ell = 1.$$
 $a_n^{(\ell)} = \frac{u_\ell^n - v_\ell^n}{u_\ell - v_\ell}.$

Let u_{ℓ} and v_{ℓ} be the roots of the polynomial $x^2 - \ell x + 1$:

$$u_{\ell} = \frac{\ell + \sqrt{\ell^2 - 4}}{2}; \qquad v_{\ell} = \frac{\ell - \sqrt{\ell^2 - 4}}{2}$$

Then

$$u_\ell + v_\ell = \ell; \qquad u_\ell v_\ell = 1.$$
 $a_n^{(\ell)} = \frac{u_\ell^n - v_\ell^n}{u_\ell - v_\ell}.$

For real r, define $\Delta_r^{(\ell)} = u_\ell^r + v_\ell^r$. Then for integer n

$$\Delta_n^{(\ell)} = a_{n+1}^{(\ell)} - a_{n-1}^{(\ell)}.$$

(Δ is the ℓ analog of "2".)

Let u_{ℓ} and v_{ℓ} be the roots of the polynomial $x^2 - \ell x + 1$:

$$u_{\ell} = \frac{\ell + \sqrt{\ell^2 - 4}}{2};$$
 $v_{\ell} = \frac{\ell - \sqrt{\ell^2 - 4}}{2}$

Then

$$u_\ell + v_\ell = \ell; \qquad u_\ell v_\ell = 1.$$
 $a_n^{(\ell)} = \frac{u_\ell^n - v_\ell^n}{u_\ell - v_\ell}.$

For real r, define $\Delta_r^{(\ell)} = u_\ell^r + v_\ell^r$. Then for integer n

$$\Delta_n^{(\ell)} = a_{n+1}^{(\ell)} - a_{n-1}^{(\ell)}.$$

(Δ is the ℓ analog of "2".)

$$(\Delta_{n/2}^{(\ell)})^2 = u_\ell^n + 2(u_\ell v_\ell)^{n/2} + v_\ell^n = \Delta_n^{(\ell)} + 2.$$

$$\Delta_{-r}^{(\ell)} = u_{\ell}^{-r} + v_{\ell}^{-r} = v_{\ell}^{r} + u_{\ell}^{r} = \Delta_{r}^{(\ell)}$$

A 3-term recurrence for the ℓ-nomial [LS]

$$\binom{n}{k}^{(\ell)} = \binom{n-2}{k}^{(\ell)} + \Delta_{n-1}^{(\ell)} \binom{n-2}{k-1}^{(\ell)} + \binom{n-2}{k-2}^{(\ell)}$$

Proof: Use identities:

$$a_{n+k}^{(\ell)} - a_{n-k}^{(\ell)} = \Delta_n^{(\ell)} a_k^{(\ell)}.$$

$$a_n^{(\ell)}a_{n-1}^{(\ell)}-a_k^{(\ell)}a_{k-1}^{(\ell)}=a_{n-k}^{(\ell)}a_{n+k-1}^{(\ell)}.$$

An *ℓ*-nomial theorem [LS]: An analog of

$$\sum_{k=0}^{n} \binom{n}{k} z^{k} = (1+z)^{n}$$

is

$$\sum_{k=0}^{n} \binom{n}{k}^{(\ell)} z^{k} = \prod_{i=0}^{n-1} (u_{\ell}^{i-(n-1)/2} + v_{\ell}^{i-(n-1)/2} z) =$$

$$(1 + \Delta_1^{(\ell)}z + z^2)(1 + \Delta_3^{(\ell)}z + z^2) \cdots (1 + \Delta_{n-1}^{(\ell)}z + z^2) \quad n \text{ even}$$

$$(1 + z)(1 + \Delta_2^{(\ell)}z + z^2)(1 + \Delta_4^{(\ell)}z + z^2) \cdots (1 + \Delta_{n-1}^{(\ell)}z + z^2) \quad n \text{ odd}$$

A coin-flipping interpretation of the ℓ-nomial

For real r, let $C_r^{(\ell)}$ be a weighted coin for which the probability of tails is $u_\ell^r/\Delta_r^{(\ell)}$ and the probability of heads is $v_\ell^r/\Delta_r^{(\ell)}$.

The probability of getting exactly k heads when tossing the n coins

$$C_{-(n-1)/2}^{(\ell)}, \quad C_{1-(n-1)/2}^{(\ell)}, \quad C_{2-(n-1)/2}^{(\ell)}, \quad \dots, \quad C_{(n-1)/2}^{(\ell)}$$
 :

A coin-flipping interpretation of the ℓ-nomial

For real r, let $C_r^{(\ell)}$ be a weighted coin for which the probability of tails is $u_\ell^r/\Delta_r^{(\ell)}$ and the probability of heads is $v_\ell^r/\Delta_r^{(\ell)}$.

The probability of getting exactly k heads when tossing the n coins

$$C_{-(n-1)/2}^{(\ell)}, \quad C_{1-(n-1)/2}^{(\ell)}, \quad C_{2-(n-1)/2}^{(\ell)}, \quad \dots, \quad C_{(n-1)/2}^{(\ell)} :$$

$$\frac{\binom{n}{k}^{(\ell)}}{\Delta_{-(n-1)/2}^{(\ell)} \Delta_{1-(n-1)/2}^{(\ell)} \cdots \Delta_{(n-1)/2-1}^{(\ell)} \Delta_{(n-1)/2}^{(\ell)}}$$

 $\Delta_{j/2}^{(\ell)}$ may not be an integer, but $\Delta_{-j/2}^{(\ell)}\Delta_{j/2}^{(\ell)} \ = \ \Delta_{j}^{(\ell)}+2$ is.

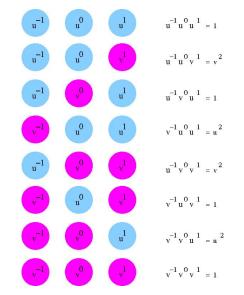


Figure: The 8 possible results of tossing the weighted coins $C_{-1}^{(\ell)}, C_0^{(\ell)}, C_1^{(\ell)}$. Heads (pink) are indicated with their "v" weight and tails (blue) with their "u" weight. The weight of each toss is shown.

Define a q-analog of the ℓ -nomial:

$$a_n^{(\ell)}(q) = \frac{u_\ell'' - v_\ell'' q''}{u_\ell - v_\ell q}; \qquad \qquad \Delta_n^{(\ell)}(q) = u_\ell^n + v_\ell^n q^n$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(\ell)} = \frac{a_{n}^{(\ell)}(q) \ a_{n-1}^{(\ell)}(q) \ \cdots \ a_{n-k+1}^{(\ell)}(q)}{a_{k}^{(\ell)}(q) \ a_{k-1}^{(\ell)}(q) \ \cdots \ a_{1}^{(\ell)}(q)}.$$

Then

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(\ell)} = q^k \begin{bmatrix} n-2 \\ k \end{bmatrix}_q^{(\ell)} + \Delta_{n-1}^{(\ell)}(q) \begin{bmatrix} n-2 \\ k-1 \end{bmatrix}_q^{(\ell)} + q^{n-k} \begin{bmatrix} n-2 \\ k-2 \end{bmatrix}$$

and

$$\sum_{k=0}^{n} \left[{n \atop k} \right]_{q}^{(\ell)} q^{k(k+1)/2} z^{k} = \alpha_{n}(q,z) \prod_{i=1}^{\lfloor n/2 \rfloor} (1 + zq^{i} \Delta_{n-2i+1}^{(\ell)}(q) + z^{2} q^{n+1})$$

where $\alpha_n(q,z)=1$ if n is even; $(1+zq^{(n+1)/2})$ if n is odd.

Proofs can be derived from this partition-theoretic interpretation:

vq	vq	vq	vq	vq	u	u	ι
vq	vq	vq	vq	vq	u	u	ι
vq	vq	vq	vq	vq	u	u	ι
vq	vq	vq	vq	vq	u	u	ι
vq	vq	vq	vq	u	u	u	u
vq	vq	vq	vq	u	u	u	u
vq	vq	vq	u	u	u	u	u

n-k

Another q-analog of the ℓ -nomial

Let
$$a_n(q) = (1 - q^{a_n})/(1 - q)$$
. Then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(\ell)} = \sum_{(\mu, f)} q^{shapeweight(\mu)} q^{fillweight(\mu, f)}$$

where the sum is over all pairs (μ,f) such μ is a partition in $[k\times (n-k)]$ and f is a filling f(i,j) of the cells of $[k\times (n-k)]$ with elements of $\{0,1,\ldots \ell-1\}$ so that (i) no row of μ or column of μ^c contains $(\ell-1)(\ell-2)^*(\ell-1)$ and ... (a bit more)

Indexing cells of $k \times (n-k)$ bottom to top, left to right:

- ightharpoonup cell (i,j) has a shape weight $(a_i-a_{i-1})(a_j-a_{j-1})$
- ightharpoonup shape weights of cells in μ
- ightharpoonup cell (i,j) has a fill weight $a_i a_j$
- fillweight(μ , f) is $\sum_{i,j} f(i,j)a_ia_j$.

(Now starting to get something related to lecture hall partitions.)



Question: Is there an analytic proof of the ℓ -Euler theorem? When $\ell=2$, the standard approach is to show the equivalence of the generating functions for the set of partitions into odd parts and the set of partitions into distinct parts:

$$\prod_{k=1}^{\infty} \frac{1}{1 - q^{2k-1}} = \prod_{k=1}^{\infty} (1 + q^k).$$

The sum/product form of Euler's theorem is

$$\prod_{k=1}^{\infty} \frac{1}{1 - q^{2k-1}} = \sum_{k=0}^{\infty} \frac{q^{k(k+1)}}{(q; q)_k}$$

Is there an analog for the ℓ -Euler theorem? What is the sum-side generating function for partitions in which the ratio of consecutive parts is greater than c_{ℓ} ?

Question: When $\ell=2$, several refinements of Euler's theorem follow from Sylvester's bijection. What refinements of the ℓ -Euler theorem can be obtained from the bijection? We have some partial answers, but here's one we can't answer:

Sylvester showed that if, in his bijection, the partition μ into odd parts maps to λ (distinct parts), then the number of distinct part sizes occurring in μ is the same as the number of maximal chains in λ . (A *chain* is a sequence of consecutive integers.) Is there an analog for $\ell > 2$?

Question: Can we enumerate either of these finite sets:

- The integer sequences $\lambda_1,\ldots,\lambda_n$ in which the ratio of consecutive parts is greater than c_ℓ and $\lambda_1 < a_{n+1}^{(\ell)}$? We have a combinatorial characterization: these can be viewed as fillings of a staircase of shape $(n,n-1,\ldots,1)$ such that (i) the filling of each row is an ℓ -ary string with no $(\ell-1)(\ell-2)^*(\ell-1)$ and (ii) the rows are weakly decreasing, lexicographically. For $\ell=2$ the answer is 2^n .
- ▶ The integer sequences $\lambda_1, \ldots, \lambda_n$ satisfying

$$1 \ge \frac{\lambda_1}{a_n} \ge \frac{\lambda_2}{a_{n-1}} \ge \ldots \ge \frac{\lambda_{n-1}}{a_2} \ge \frac{\lambda_n}{a_1} \ge 0$$

For $\ell = 2$ this is the same set as above and the answer is 2^n .

Question: What is the generating function for truncated ℓ -lecture hall partitions?

Question: What is the right q-analog of the ℓ -nomial (and the right interpretation) to explain and generalize lecture hall partitions?

(We know what lecture hall partitions look like in the " ℓ -world". What about ordinary partitions? partitions into distinct parts?)

Question: There are several q-series identities related to Euler's theorem, such as Lebesgue's identity the Roger's-Fine identity Cauchy's identity Are there ℓ -analogs?

Sincere thanks to ...

You, the audience

The FPSAC08 Organizing Committee

The FPSAC08 Program Committee

Luc Lapointe

CanaDAM 2009

2nd Canadian Discrete and Algorithmic Mathematics Conference

May 25 - 28, 2009

CRM, Montreal, Quebec, Canada

http://www.crm.umontreal.ca/CanaDAM2009/index.shtml

AMS 2009 Spring Southeastern Section Meeting

North Carolina State University

Raleigh, NC April 4-5, 2009 (Saturday - Sunday)

Some of the special sessions:

- Applications of Algebraic and Geometric Combinatorics (Sullivant, Savage)
- Rings, Algebras, and Varieties in Combinatorics (Hersh, Lenart, Reading)
- ► Recent Advances in Symbolic Algebra and Analysis (Singer, Szanto)
- Kac-Moody Algebras, Vertex Algebras, Quantum Groups, and Applications (Bakalov, Misra, Jing)
- Enumerative Geometry and Related Topics (Rimayi, Mihalcea)
- Homotopical Algebra with Applications to Mathematical Physics (Lada, Stasheff)
- ▶ Low Dimensional Topology and Geometry (Dunfield, Etnyre, Ng)

