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Euler’s Partition Theorem:

The number of partitions of an integer N into odd parts is equal
to the number of partitions of N into distinct parts.

Example: N =8
Odd parts:
(7,1) (53) (51,1,1) (33411 (31,1,1,1,1) (1,1,1,1,1,1,1,1)

Distinct Parts:
(8) (7,1) (6,2) (53) (521) (4,31)



Sylvester’s Bijection

0dd Parts
A’7. A'1

11 1|1 111 7
1 1 1 1 1 1 1 vl
11| 11 11 1 7
11| 11 111 7
1 1| 1|1 11 1 7
11| 11 11 1 7
11| 11 11 1 7
1 1| 1|1 11 1 7
1| 1|1 101 5
1 1|1 11 5
1|1 1 3
1|1 1 3
1 1




Sylvester’s Bijection

2 2 OddParts  __, Distinct Parts
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(-sequences

For integer £ > 2, define the sequence {aff)},,zl by

0 _ Ea(ﬁ) (0)

( _
d 1 an—27

n n—

with initial conditions age) =1, ag) =/,



(-sequences

For integer £ > 2, define the sequence {aff)},,zl by

a(g) = Ea(g)l — a£€22,

n n—

with initial conditions age) =1, ag) =/,

{a®Y = 1, 3,8, 21, 55, 144, 377,...

{a@} = 1,2 3, 4,5 6,7,...



(-sequences

For integer £ > 2, define the sequence {aff)},,zl by

0 _ Ea(ﬁ)l _ a(é)

(
d n—2

n n—

with initial conditions age) =1, ag) =/,

{a®Y = 1, 3,8, 21, 55, 144, 377,...

{a@} = 1,2 3, 4,5 6,7,...

(These are the (k, /) sequences in [BME2] with k =/ =¢.)



£>2

The (-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

(OO

{a(e) (6) ag@) +a,’, ay + ag@)’ .

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

(+ VP24

Cy = 5

Proof: via lecture hall partitions.



=2
The (-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

{0+1,1+42 2+3, ...} ={1,3,5,...}

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

2+V22 -4

1
2

C =



¢=3
The (-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

{0+1, 14+3,3+8, ...} = {1, 4, 11, 29,...}

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

3+V32-4

5 (3+V5)/2

3 =



¢=3
The (-Euler theorem [BME2]: The number of partitions of an
integer N into parts from the set

{0+1, 14+3,3+8, ...} = {1, 4, 11, 29,...}

is the same as the number of partitions of N in which the ratio of
consecutive parts is greater than

3+V32-4

5 (3+V5)/2

3 =

Stanley: bijection?



©(): Bijection for the /-Euler Theorem [SY07]

Given a partition p into parts in
{ag+a1, ay+a, ay+as ...}

construct A = (A1, A2, ...) by inserting the parts of 1 in nonincreasing
order as follows:

To insert ag_1 + ax into (A1, Az,...):

If k=1, then add a; to Aq;

otherwise, if (A1 4+ ax — ak—1) > (A2 + ak—1 — ak—2),
add ay — ax_1 to A1, add ax_1 — ax_> to \p;
recursively insert ax_p + ax_1 into (A3, A\g,...)

otherwise,
add ax to A1, and add ax_1 to Ao.




The insertion step
To insert ax + akx_1 into (A1, A2, A3, As, ...) either do
(i) (M +ak, A2+ ak—1, A3, M4,...)
or
(i) (A1 + (ak — ak—1), A2+ (ak—1 — ak—2),
insert (ak—1 + ak—z)into(A3, As, . ..))
How to decide?

Do (ii) if the ratio of first two parts is okay, otherwise do (i).



Sylvester Diagrams

Test () Test (*)
A A A

I F 12 sfnos 2o F
[N T B T P 12 5|15 2 1 F
[N I [ | P 12 | s | 5 2 1 P
1 [ R | P 1 2 5B 5 2 1 F
[ I [ R | P F
[ I [ R | P P
1 [ | P F
1 [ | P P
[N I [ P F
[ I (I P F
[ 1 P F
Lt 1 P P
Lt




Interpretation of aff)

Define T,Sé): set of /-ary strings of length n that do not contain

(-1 —-2)"(¢—-1)

7Y ={0,1,2} 1T =3
713 = {00,01,02,11,10, 12,20, 21} 1T =8
7. all 27 except 220, 221, 222, 022, 122, and 212.

T =27-6=21

Theorem |T®| = afﬁl.



Binary numeration system

10110 — 124 +0%x234+1%224+1x214+0x20=22

(unique representation)

Ternary numeration system

10211 — 1x3*+0x334+2%324+1%x31+1x30=138

(unique representation)



Binary numeration system

10110 — 142 +0%x23+1%224+1%214+0%x20=22

(unique representation)

Ternary numeration system

10211 — 1%x3*+0%334+2%x324+1x314+1%3°=138

(unique representation)

A Fraenkel numeration system: ternary, but ...

10211 — 1%x55+0%214+2%x8+1%x3+1x1=75



Binary numeration system

10110 — 124 +0%x234+1%224+1x214+0x20=22

(unique representation)

Ternary numeration system

10211 — 1x3*+0x334+2%324+1%x31+1x30=138

(unique representation)

A Fraenkel numeration system: ternary, but ...

10211 — 1x554+0%x21+2x8+1x3+1%x1=75
00212 — O0%b54+0%x21 +2%x8+1x3+2x1=21

01000 — 0+xb55+1%21+0+8+0+x3+0x1=21



Binary numeration system

10110 — 124 +0%x234+1%224+1x214+0x20=22

(unique representation)

Ternary numeration system

10211 — 1x3*+0x334+2%324+1%x31+1x30=138

(unique representation)

A Fraenkel numeration system: ternary, but ...

10211 — 1x554+0%x21+2x8+1x3+1%x1=75
00212 — O0%b54+0%x21 +2%x8+1x3+2x1=21
01000 — O0%b554+1%x21+0%84+0x3+0x1=21

but unique representation by ternary strings with no 21*2



Theorem [Fraenkel 1985] Every nonnegative integer has a unique
(up to leading zeroes) representation as an f-ary string which does
not contain the pattern

(=1 (=2)" (£-1).

Proof Show that
n
f: bnbn—l . b1 — Zb,-a,-
is a bijection

fo 70 — {0,1,2,...a0, —1}.

The {-representation of an integer x is

[x] = f1(x).



A 377|144 |55 (21 |8 |3 |1 lex order
754 2 0 0O|0|O0|O 2000000
273 1 0|2|1]|0 1202100
102 2 0|12 1201200
38 1(2|0(1 1201000
14 1|20 1200000
5 1|2 1200000
1 1 1000000




A 377|144 |55 (21 |8 |3 |1 lex order
754 2 0 0O|0|O0|O 2000000
273 1 0|2|1]|0 1202100
102 2 0|12 1201200
38 1(2|0(1 1201000
14 1|20 1200000
5 1|2 1200000
1 1 1000000

Theorem [SYO07]: For positive integers X, y,

x > cy iff [x]=[y]-0




¢ = 3+V5)/2~ 2618

A [[377[144|55]21]8[3]1 lex order
2.16a 74 2 | o o] o|o]o|of||2000000
2.6'705,t 273 1 o|2[1|o|[1202100
a.amtloz 1| 2]ofl1|2]|[1201200
2.y 38 1]2]/o|1[1201000
3.2.}14 1|/2]ol[1200000
s NI 1|2]|[l1200000

Nil 1{|ltooo0o000

x > ¢y iff [x] = [y]-0



Can revise bijection
To insert ag + aky1 into (A1, A2, A3, Aa, ...) either do
(i) (M +ak, Ao+ ak—1, A3, A\a,...)
or
(i1) (M + (ak — ak—1), A2+ (ak—1 — ak—2),
insert (ak—1 + ak—z)into(A3, As,...))
How to decide?
Do (i) if it does not create a carry in Fraenkel arithmetic;

otherwise do (ii).

So, insertion becomes a 2-d form of Fraenkel arithmetic.



Lecture Hall Partitions
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The Lecture Hall Theorem [BME1] The generating function for

integer sequences A1, Ao, ..., A, satisfying:
L 2> 2 5 shag
n n—1 1
is



The Lecture Hall Theorem [BME1] The generating function for

integer sequences A1, Ao, ..., A, satisfying:
L 2> 2 5 shag
n n—1 1
is
. 1
Ln(q) = H 1— g2t
i=1
limp— oo (Lecture Hall Theorem) = Euler's Theorem since
A A A
! > 2 1 > ... > T" > 0 — partitions into distinct parts
n n—

i 1 o . .
H 1—7q2’_1 — partitions into odd parts
i=1



Let {a,} = {a!"1.
The (-Lecture Hall Theorem [BME2]: The generating function

for integer sequences A1, A2, ..., A, satisfying:
A A An_ A
(P 2L 25 S0l Onsg
dn a1 a4 a;
is

Lg)(CI) = H m

i=1

limp— oo (¢-Lecture Hall Theorem) = /¢-Euler Theorem

since as n — 00, ap/ap-1 — <



@S,Z): Bijection for the /-Lecture Hall Theorem

Given a partition p into parts in
{30 +ay, ag+ag, aa+az, ...;ap-1+ an}

construct A = (A1, A\2,...,A,) by inserting the parts of x in nonin-
creasing order as follows:

To insert ax_1 + ak into (A1, A2,..., A\p):

If Kk =1, then add a; to Aq;

otherwise, if ()\1 + ak — ak,l) > (an/an,l)()\g + ak—1 — ak,g),
add ayx — ax_1 to A1, add aix_1 — ak_> to As;
recursively insert ax_o + ax—1 into (A3, Aa,..., Ap)

otherwise,
add a, to A1, and add ai_1 to A».




Relationship between bijections
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Bijections

Sylvester
Bijection

BME Lecture | | | Euler
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Theorem
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Bijections

Yee Sylvester
7 Bijection n — oo Bijection
¥

e
BME Lecture | | | Euler
Bijection Hall n — 0o Theorem

Theorem

=2 T Te:z

¢- Lecture ¢ Euler

Hall ——» |tEu <«— Bijecti
ijection?
Theorem | n — oo Thearem ¢
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Truncated lecture hall partitions

o . ﬁ> A2 > > Ak—1 > Ak > 0
L”’k' n " n-—-17" “n—k+2 " n—k+1

Theorem: [Corteel,S 2004]

(0) ey [ o] (9" gk
Lnk( ) q( ) [ k :|q (q2”_k+1,q)k

where (a;q), = (1 —a)(1 —aq)--- (1 —aq" 1)

Analog for f-lecture hall partitions?



Truncated lecture hall partitions

0 .>ﬁ> A2 s Ak—1 S Ak
L”’kU'J_n_n—l “n—k+2 " n—k+1 >0

Theorem: [Corteel,S 2004]

=] 7] @

k (q2n—k+1: q),

nfk+1; q)k

where (a;q), = (1 —a)(1 —aq)--- (1 —aq" 1)

Theorem [Corteel,Lee,S 2005]
(0) _ k(D
Ln,k,j(]‘) =J <k>

Analog for f-lecture hall partitions?



Theorem [Corteel,S 2004] Given positive integers si, ..., S,, the

generating function for the sequences A1, ..., A, satisfying
A A An— A
A2 S0t 0
S1 52 Sp—1 Sn

is

E bZ -]

DD D LD D S il | e
[T (1 —q)

where by =l and for2<i<n, by =51 +s + -+ 5.

Corollary As g — 1, (1 — q)"x this gf —

5253--.5,7

H?:l bi



Truncated ¢-lecture hall partitions — /-nomials

Corollary For ¢-sequence {a;}:

A A A
s —2>—2> "k 59
’ dntk dnt+k—1 dn+1

Y4

LY, (q) =

but

()

kL(E)
(p1p2 - - Pk)(PntkPnik—1""" Pnt1)

clli'—n (1 =q)* Lok i(q)) =

)
where p; = a; + a;_1 and (Z) is the /-nomial ...



The /-nomial coefficient

0 (¢ ¢
(”) ® _ 351 )351—)1 e 3£2k+1

O X

Example

= 174,715, 376.

0\ 2584087 %377 144
4 - 21 x8%3x1

14
Theorem [Lucas 1878] (Z)( ) is an integer.

like Fibonomials, e.g. Ron Knott's web page:
http://www.mcs.surrey.ac.uk/Personal /R.Knott/Fibonacci/Fibonomials.html



“Pascal-like” triangle for the /-nomial coefficient:

1
1 1
1 3 1
1 8 8 1
1 21 56 21
1 55 385 385 55
1 144 2640 6930 2640

Theorem

n\" (©) o (-1 o (©)
<k> = (a1 — 3 )< K > + (a2 — 3y~

144



Let up and v; be the roots of the polynomial x? —Ix+1:

L+ 02 —4 0 —\12 -4
Up = —————; V=
2 2
Then
ug+ vy = ¢, upvp = 1.
n__.,n
a0 = Up — v



Let up and v; be the roots of the polynomial x? —Ix+1:

(+\12 -4 0 —\12 -4
up=————; Vo= ——Fr——
2 2
Then
ug+ vy = ¢, upvp = 1.

n__.,n

RO 7}

up — vy

For real r, define Ag) = uy + v;. Then for integer n

(A is the £ analog of “2".)



Let up and v; be the roots of the polynomial x? —Ix+1:

(+\12 -4 0 —\12 -4
up=————; Vo= ——Fr——
2 2
Then
ug+ vy = ¢, upvp = 1.

n__.,n

RO 7}

up — vy

For real r, define Ag) = uy + v;. Then for integer n

(A is the £ analog of “2".)
(A2 = uf +2(uw)? + vy = ALY +2.

A(Q:u[r—l—v[r:v[—l—ug:Ag)



A 3-term recurrence for the /-nomial [LS]

0 NG NG
() = () ()
k k k—1

Proof: Use identities:

(0) (6) () ,(0) (OO

dn dp1 — A 1 = A k@ k-1

n—2
k—2

) (9)



An /-nomial theorem [LS]: An analog of

En: (Z)zk = (1+2)

k=0

(1+ A:(le)z +22)(1+ Agg)z +22)- (1 + Afﬁlz +2z%) neven

1+2)1+8Y2+ 20 +a02+22) -1 +28Y,2+22) nodd



A coin-flipping interpretation of the /-nomial

For real r, let C¥) be a weighted coin for which the probability of
tails is ug/Ag) and the probability of heads is v;/Ag).

The probability of getting exactly k heads when tossing the n coins

) 0) ) o .
Clmnyye Gl Gl 0 ity



A coin-flipping interpretation of the /-nomial

For real r, let C¥) be a weighted coin for which the probability of
tails is ug/Ag) and the probability of heads is v;/Ag).

The probability of getting exactly k heads when tossing the n coins

) o) (0) o .
C—(n—l)/2’ Cl—(n—l)/2’ C2—(n—1)/2’ e C(n—l)/2'
N0
k

NG ING T AD AD

AJ(.?Z may not be an integer, but A(_ZJ)./2AJ(§)2 = J(-L]) + 2 is.



u u uu =
=1 101 2
" . vV =
0 1.0 1
. " . ¥y e
1 1.0 1 2
‘ ‘ u vV s
v oV v =

Figure: The 8 possible results of tossing the weighted coins
Cﬁﬂ), Céé), Cl(é). Heads (pink) are indicated with their “v" weight and
tails (blue) with their “u" weight. The weight of each toss is shown.



Define a g-analog of the /-nomial:

¢ ;i —viq" ¢ N, onon
aa) =" = A(q) = uf + g

[ . ]w) () a9 (q) - a9, ,(q)

Ko @ di@) - ()
Then
¢ ¢
[k]i) = q"[nzz]i) + aY (q) “:ﬂ:) + ‘kH:E]
and
Zn: n ® k(k+1)/2 k _ i iA(é) . 2 _n+1
k_omq HEV = a0 [[ 0 2B (0) - )

where a,(q,z) = 1if nis even; (1 + zq("*1/2) if n is odd.



Proofs can be derived from this partition-theoretic interpretation:

vq (vq |(¥q|(¥g|¥q| u |(u |u

vq (vq |(¥q|(¥g|vg | u |u |u

vq (vq |(¥q|(¥g|¥q| u |u |u

vq (vq |(¥q|(¥g|vg | u |u |u

vq (vq |(¥q|(¥g| u | u |u |u

vq (vq |(¥q|(¥g| u | u |u |u

¥q (vq |(¥q| u|u |u |u |u

n-k



Another g-analog of the /-nomial

Let a,(g) = (1 —q¢?")/(1 — q). Then

n shapeweight () . fillweight(p,f)

q )q

k
9 (wf)

where the sum is over all pairs (u, f) such p is a partition in
[k x (n— k)] and f is a filling f(i,)) of the cells of [k x (n — k)]
with elements of {0,1,...¢ — 1} so that (i) no row of x or column
of u¢ contains (¢ —1)(¢ —2)*(¢ — 1) and ... (a bit more)
Indexing cells of k x (n — k) bottom to top, left to right:

> cell (7,)) has a shape weight (a; — aj_1)(aj — aj_1)

> shapeweight(p) is sum of shape weights of cells in u

> cell (7,/) has a fill weight a;a;

> fillweight(p, f)is 3, f(i,j)aia;.
(Now starting to get something related to lecture hall partitions.)



Question: |s there an analytic proof of the ¢-Euler theorem?
When ¢ = 2, the standard approach is to show the equivalence of
the generating functions for the set of partitions into odd parts and
the set of partitions into distinct parts:

o0 1 [e.9]
11 1_g2k1 [1a+d.
PR k=1

The sum/product form of Euler's theorem is

00 ooqk(k+1
11— Z
k=1 q9

Is there an analog for the /-Euler theorem? What is the sum-side
generating function for partitions in which the ratio of consecutive
parts is greater than ¢,?



Question: When ¢ = 2, several refinements of Euler’s theorem
follow from Sylvester's bijection. What refinements of the /-Euler
theorem can be obtained from the bijection? We have some partial
answers, but here's one we can't answer:

Sylvester showed that if, in his bijection, the partition x into odd
parts maps to A (distinct parts), then the number of distinct part
sizes occurring in  is the same as the number of maximal chains
in A. (A chain is a sequence of consecutive integers.) Is there an
analog for £ > 27



Question: Can we enumerate either of these finite sets:

» The integer sequences A1, ..., A, in which the ratio of
consecutive parts is greater than ¢; and A1 < afﬁl?
We have a combinatorial characterization: these can be
viewed as fillings of a staircase of shape (n,n—1,...,1) such
that (i) the filling of each row is an f-ary string with no
(¢ —1)(¢—2)"(¢ —1) and (ii) the rows are weakly decreasing,
lexicographically. For £ = 2 the answer is 2".

» The integer sequences A1, ..., A, satisfying
A A An— A
1>20> 2 > >0l Mg
n  dp1 9 9

For ¢ = 2 this is the same set as above and the answer is 2.



Question: What is the generating function for truncated /-lecture
hall partitions?

Question: What is the right g-analog of the ¢-nomial (and the
right interpretation) to explain and generalize lecture hall
partitions?

(We know what lecture hall partitions look like in the “/-world”.
What about ordinary partitions? partitions into distinct parts?)

Question: There are several g-series identities related to Euler's
theorem, such as Lebesgue's identity the Roger's-Fine identity
Cauchy's identity Are there f-analogs?



Sincere thanks to ...
You, the audience
The FPSACO08 Organizing Committee
The FPSACO08 Program Committee

Luc Lapointe
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